Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(18): 29968-29974, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710785

RESUMO

We report a technological concept for freestanding photonic elements based on metamaterials fabricated on polymer films by clean-room processes and framed using 3D printing. A spin-coated cyclic olefin copolymer (TOPAS) of variable thickness down to one micrometer was used as the substrate onto which metamaterials were fabricated using optical lithography. We demonstrate the possibility of applying a second TOPAS layer to protect the device or to allow for stacking another metamaterial layer. To obtain freestanding elements, frames were 3D printed directly on top of the metamaterial before lift-off from the carrier wafer. This ensured maintaining the flatness of the elements. Both the cleanroom process and the 3D printing enabled the design and manufacturing of elements in different sizes and shapes, e.g., to adapt to specific experimental set-ups and holder geometries or to be compatible with standard optical mounts. While TOPAS is transparent for wavelengths from UV to the far infrared, except for a few infrared absorption lines, we illustrate the concept with the simulation and manufacturing of THz band-pass filters. The performance of the fabricated filters was assessed using THz time-domain spectroscopy. The process is scalable to other wavelength ranges and has the potential for upscaling in manufacturing.

2.
Soft Matter ; 19(31): 5967-5977, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491884

RESUMO

On the surface of tea infusions, the formation of a transparent, shiny film which cracks upon disturbance can often be observed. This study aims to determine how water composition, tea varieties, and tea additives impact the formation and properties of tea film, often also called tea scum. The strength of the surface film, composed of polyphenols complexed with various ions from tap water, was investigated by interfacial rheology. Microscopy and ellipsometry were used to investigate structure and thickness of the adsorption layer, respectively. We find that green tea forms more visible layers than black tea in soft and moderate artificial tap water, but in these same waters, black tea demonstrated greater surface strength. In hard artificial tap water, green tea demonstrated greater surface strength than black. No visible layer nor surface strengthening was observed on rooibos tea. Brews in hard artificial tap water formed brittle films for green tea, fracturing at strains one order of magnitude lower than in soft or moderate. Despite large variations in film strength, black tea at all water hardness levels tested formed a film with 20 nm thickness. In black tea an increased resilience to deformation was found when adding ß-casein, a protein found in milk.


Assuntos
Polifenóis , Água , Polifenóis/análise , Água/química , Chá/química , Caseínas/química
3.
Opt Express ; 31(10): 15757-15771, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157669

RESUMO

Light beams with Orbital Angular Momentum (OAM) are explored in applications from microscopy to quantum communication, while the Talbot effect revives in applications from atomic systems to x-ray phase contrast interferometry. We evidence the topological charge of an OAM carrying THz beam in the near-field of a binary amplitude fork-grating by means of the Talbot effect, which we show to persist over several fundamental Talbot lengths. We measure and analyze the evolution of the diffracted beam behind the fork grating in Fourier domain to recover the typical donut-shaped power distribution, and we compare experimental data to simulations. We isolate the inherent phase vortex using the Fourier phase retrieval method. To complement the analysis, we assess the OAM diffraction orders of a fork grating in the far-field using a cylindrical lens.

4.
Opt Lett ; 47(7): 1814-1817, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363742

RESUMO

The Talbot effect has been revived in many fields of modern optics. As a key number of self-imaging, the fundamental Talbot length plays a crucial role in many applications. However, the inspection of the Talbot carpet for determining the Talbot length is applicable only if the 2D field distribution behind the grating is represented by a 1D cross section. In this Letter, we show an effective way to overcome this limitation to explore the self-imaging of gratings with complex 2D periodicities. For that purpose, the near-field diffraction is analyzed using the Pearson correlation coefficient of the intensity distribution in Fourier space. We report results on linear, ring, and spiral gratings.

5.
Open Res Eur ; 2: 82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645345

RESUMO

Background: In the Clean Sky 2 project DIMES, the cyclic loading of a section of an A320 wing with pre-existing damage was carried out. Methods: We present a Digital Image Correlation (DIC) prototype system to monitor crack propagation in the aircraft wing. This system includes a mount for easy installation and adjustment in a confined space. Results: Strain localization and evaluation due to crack propagation was successfully observed in the Region-of-Interest (ROI) during cyclic fatigue loading. The results from the DIC prototype system were supported by conventional contact Resistance Strain Gauge (RSG) sensors acting as a far-field monitor. Conclusions: Future improvements, the combination of two DIC modules for a stereo DIC system and the potential of the DIC system for ground-based tests and Structural Health Monitoring (SHM) applications are also discussed.

6.
Phys Chem Chem Phys ; 23(41): 23886-23895, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34651630

RESUMO

The mechanism of photoinduced symmetry-breaking charge separation in solid cyanine salts at the base of organic photovoltaic and optoelectronic devices is still debated. Here, we employ femtosecond transient absorption spectroscopy (TAS) to monitor the charge transfer processes occurring in thin films of pristine pentamethine cyanine (Cy5). Oxidized dye species are observed in Cy5-hexafluorophosphate salts upon photoexcitation, resulting from electron transfer from monomer excited states to H-aggregates. The charge separation proceeds with a quantum yield of 86%, providing the first direct proof of high efficiency intrinsic charge generation in organic salt semiconductors. The impact of the size of weakly coordinating anions on charge separation and transport is studied using TAS alongside electroabsorption spectroscopy and time-of-flight techniques. The degree of H-aggregation decreases with increasing anion size, resulting in reduced charge transfer. However, there is little change in carrier mobility, as despite the interchromophore distance increasing, the decrease in energetic disorder helps to alleviate the trapping of charges by H-aggregates.

7.
Sensors (Basel) ; 21(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071538

RESUMO

We present a real-time THz imaging method using a commercial fiber-coupled photo conductive antenna as the THz source and an uncooled microbolometer camera for detection. This new combination of state-of-the-art components is very adaptable due to its compact and uncooled radiation source, whose fiber coupling allows for a flexible placement. Using a camera with high sensitivity renders real-time imaging possible. As a proof-of-concept, the beam shape of a THz Time Domain Spectrometer was measured. We demonstrate real time imaging at nine frames per second and show its potential for practical applications in transmission geometry covering both material science and security tasks. The results suggest that hidden items, complex structures and the moisture content of (biological) materials can be resolved. We discuss the limits of the current setup, possible improvements and potential (industrial) applications, and we outline the feasibility of imaging in reflection geometry or extending it to multi-spectral imaging using band pass filters.

8.
ACS Nano ; 15(4): 7451-7462, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33871983

RESUMO

Biomimetic, lamellar, and highly porous transition-metal carbide (MXene) embedded cellulose nanofiber (CNF) aerogels are assembled by a facile bidirectional freeze-drying approach. The biopolymer aerogels have large-scale, parallel-oriented micrometer-sized pores and show excellent mechanical strength and flexibility, tunable electrical properties, and low densities (2.7-20 mg/cm3). The CNF, MXene, and lamellar pores are efficiently utilized to endow the aerogels with exceptionally high birefringence in the terahertz (THz) regime. Birefringence values as high as 0.09-0.27 at 0.4 THz are achieved, which is comparable to most commercial THz birefringent materials such as liquid crystals, which suffer from fast disintegration, high cost, and complicated preparation processes. Empirical modeling for different MXene contents and an experimental comparison with silver nanowire or carbon nanotube embedded CNF aerogels suggest that the intrinsic conductivity and content of embedded nanomaterials, the aerogel porosity, and the lamellar cell walls can affect the optical properties such as the THz birefringence and absorption. The determination of optical anisotropy in the biopolymer aerogels lays a foundation for further exploration of ultralight, freestanding, and low-cost biomimetic porous architecture-based THz devices.

9.
Appl Opt ; 58(34): G256-G275, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873509

RESUMO

Imaging with THz radiation has proved an important tool for both fundamental science and industrial use. Here we review a class of THz imaging implementations, named coherent lensless imaging, that reconstruct the coherent response of arbitrary samples with a minimized experimental setup based only on a coherent source and a camera. After discussing the appropriate sources and detectors to perform them, we detail the fundamental principles and implementations of THz digital holography and phase retrieval. These techniques owe a lot to imaging with different wavelengths, yet innovative concepts are also being developed in the THz range and are ready to be applied in other spectral ranges. This makes our review useful for both the THz and imaging communities, and we hope it will foster their interaction.

10.
Chemphyschem ; 19(24): 3356-3363, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30485632

RESUMO

The superweak tetrakis(nonafluoro-tert-butoxy)aluminate coordinating anion was employed to introduce pseudo-gas-phase conditions to the 2-[5-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadien-1-yl]-1,3,3-trimethyl-3H-indolium chromophore. The resulting formation of a photoactive organic-inorganic hybrid salt has led to a highly stabilized excited state of the organic chromophore mainly due to the minimized lattice energy and Coulomb interactions. These highly beneficial features caused by the well dispersed negative charge of the anion have led to an enhanced neat spin-casted film fluorescence intensity, prolonged fluorescence lifetime, smooth thin film surfaces and a record power photovoltaic efficiency of 3.8 % when compared to organic salts of this particular chromophore containing anions with localised negative charge. Clear evidence is given that a superweak coordinating anion is an emerging key parameter in cyanine dye photochemistry. This approach can be seen as a general guideline to prepare highly efficient ionic dyes for organic semiconductor applications.

11.
Adv Sci (Weinh) ; 5(2): 1700496, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29610723

RESUMO

A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate-based anions and the bulky bistriflylimide anion are introduced to the 2-[5-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadien-1-yl]-1,3,3-trimethyl-3H-indolium chromophore using an Amberlyst A26 (OH- form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar. Evidence is given that the negative charge of the anion distributed over a large number of atoms is significantly more important than the size of the organic moieties of the sulfonate charge carrying group. This provides a clear strategy for future design of more efficient cyanine dyes for OPV applications.

12.
ACS Appl Mater Interfaces ; 10(13): 11063-11069, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29527890

RESUMO

Efficient light detection in the near-infrared (NIR) wavelength region is central to emerging applications such as medical imaging and machine vision. An organic upconverter (OUC) consists of a NIR-sensitive organic photodetector (OPD) and an visible organic light-emitting diode (OLED), connected in series. The device converts NIR light directly to visible light, allowing imaging of a NIR scene in the visible. Here, we present an OUC composed of a NIR-selective squaraine dye-based OPD and a fluorescent OLED. The OPD has a peak sensitivity at 980 nm and an internal photon-to-current conversion efficiency of ∼100%. The OUC conversion efficiency (0.27%) of NIR to visible light is close to the expected maximum. The materials of the OUC multilayer stack absorb very little light in the visible wavelength range. In combination with an optimized semitransparent metal top electrode, this enabled the fabrication of transparent OUCs with an average visible transmittance of 65% and a peak transmittance of 80% at 620 nm. Visibly transparent OUCs are interesting for window-integrated electronic circuits or imaging systems that allow for the simultaneous detection of directly transmitted visible and NIR upconverted light.

13.
Opt Lett ; 43(3): 543-546, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400836

RESUMO

We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too. We reconstructed an amplitude and a phase object with both simulated and real data. Lateral resolution accounts to <2λ, while depth variations as low as λ/30 can be assessed.

14.
Opt Express ; 25(10): 11038-11047, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788789

RESUMO

We present a method for the separation of the signal scattered from an object hidden behind a THz-transparent sample in the framework of THz digital holography in reflection. It combines three images of different interference patterns to retrieve the amplitude and phase distribution of the object beam. Comparison of simulated with experimental images obtained from a metallic resolution target behind a Teflon plate demonstrates that the interference patterns can be described in the simple form of three-beam interference. Holographic reconstructions after the application of the method show a considerable improvement compared to standard reconstructions exclusively based on Fourier transform phase retrieval.

15.
Sensors (Basel) ; 16(2): 221, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861341

RESUMO

In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 µm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 µm, 118.8 µm, and 393.6 µm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.


Assuntos
Holografia , Radiação Terahertz , Desenho de Equipamento , Lasers , Luz , Razão Sinal-Ruído , Silício/química , Compostos de Vanádio/química
16.
Opt Express ; 23(9): 10957-67, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969190

RESUMO

We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 µm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 µm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.

17.
Sci Technol Adv Mater ; 16(1): 015005, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877755

RESUMO

The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 µA was drawn from the brazed nanotubes at an applied electric field of 0.6 V µm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

18.
Opt Express ; 22(13): 16079-86, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977861

RESUMO

A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.

19.
Adv Mater ; 23(48): 5812-6, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22105915

RESUMO

Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.


Assuntos
Alumínio/química , Nanotecnologia/métodos , Ligas/química , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Teste de Materiais , Metais/química , Microscopia Eletrônica/métodos , Microscopia Eletrônica de Varredura/métodos , Estresse Mecânico , Propriedades de Superfície , Temperatura , Ultrassom , Raios X
20.
Opt Express ; 19(20): 19407-14, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21996881

RESUMO

In imaging and focusing applications, spherical aberration induces axial broadening of the point spread function (PSF). A transparent medium between lens and object of interest induces spherical aberration. We propose a method that first obtains both the physical thickness and the refractive index of the aberration inducing medium in situ by measuring the induced focal shifts for paraxial and large angle rays. Then, the fourth order angle dependence of the optical path difference inside the medium is used to correct the spherical aberration using a phase-only spatial light modulator. The obtained measurement accuracy of 3% is sufficient for a complete compensation as demonstrated in a model microscope with NA 0.3 with glass plate induced axial broadening of the PSF by a factor of 5.


Assuntos
Lentes , Luz , Modelos Teóricos , Refratometria/instrumentação , Espalhamento de Radiação , Artefatos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...